Corrigendum: ‘‘Least squares approximation with constraints”
نویسندگان
چکیده
منابع مشابه
Least Squares Approximation
In many applications we want to find an approximation for a function, for example for differential equations. Example problem: We want to understand how a calculator or computer can evaluate sinx for a given value x. The processor can essentially only perform addition, multiplication, division. Therefore we can try to approximate the function with a polynomial. We use the notation Pn for polyno...
متن کاملLeast-squares polynomial approximation
We construct symmetric polar WAMs (Weakly Admissible Meshes) with low cardinality for least-squares polynomial approximation on the disk. These are then mapped to an arbitrary triangle. Numerical tests show that the growth of the least-squares projection uniform norm is much slower than the theoretical bound, and even slower than that of the Lebesgue constant of the best known interpolation poi...
متن کاملFaster Least Squares Approximation
Least squares approximation is a technique to find an approximate solution to a system of linear equations that has no exact solution. In a typical setting, one lets n be the number of constraints and d be the number of variables, with n d. Then, existing exact methods find a solution vector in O(nd2) time. We present two randomized algorithms that provide accurate relative-error approximations...
متن کاملMoving Least Squares Approximation
An alternative to radial basis function interpolation and approximation is the so-called moving least squares method. As we will see below, in this method the approximation Pf to f is obtained by solving many (small) linear systems, instead of via solution of a single – but large – linear system as we did in the previous chapters. To make a connection with the previous chapters we start with th...
متن کاملLeast Squares Problems with Absolute Quadratic Constraints
This paper analyzes linear least squares problems with absolute quadratic constraints. We develop a generalized theory following Bookstein’s conic-fitting and Fitzgibbon’s direct ellipse-specific fitting. Under simple preconditions, it can be shown that a minimum always exists and can be determined by a generalized eigenvalue problem. This problem is numerically reduced to an eigenvalue problem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1987
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1987-0878710-3